TCO of DOCSIS® Network XHaul vs. Fiber BackHaul: How DOCSIS Networks Triumph in the Indoor Use Case

Why DOCSIS Networks?

  • Broad-based availability: In a Technical Paper prepared for SCTE-ISBE 2018 Fall Technical Forum, a major Canadian MSO pointed out that there typically is 3~5X more coax cable than fiber in its major metro markets. In the US too, per FCC’s June 2017 statistics, nation-wide cable Household Passed (HHP) stands at 85% (115M units), whereas fiber HHP stands at 29% (39M units)
  • Gigabit footprint: As of June 2018, over 63% of US homes have access to gigabit service over cable. In other markets cable operators are pushing ahead with gigabit buildout as well
  • Ease of site acquisition: No permitting, no make ready, limited installation effort.
  • Evolving mobile-friendly technology: Ranging from latency optimization to timing/synchronization techniques and vRAN support for non-ideal fronthaul links like DOCSIS networks.

Scenarios We Looked At

Scenario 1: Outdoor small cell served by leased fiber backhaul
Scenario 2: Indoor femtocell:home eNodeB served by residential:SMB DOCSIS network links as backhaul.
Scenario 3- Indoor vRAN Remote Radio Unit (RRU) served by residential:SMB DOCSIS network links as fronthaul

Apples to Apples

Work Smarter, Not Harder

Figure-A: Determining Scale of Deployment for Indoor Use Cases

Our Analysis and Key Takeaways

Figure-B: Summary of 7-Yr. TCOs across 3 Deployment Scenarios
  • TCO in scenarios 2 and 3 can be around 40%~50% cheaper than the TCO in scenario 1.
  • For scenario 1, Opex stands out as it involves large fees associated with outdoor small cell site lease and fiber backhaul lease.
  • Scenario 2 commands a higher Capex than scenario 3, largely because of higher (~2X) unit price per full-stack home femtocell (vs. home RRU) and the need for security gateway, which is not required in scenario 3.
  • Scenario 3’s Opex is nearly double (vs. scenario 2 Opex), as it requires a significantly higher DOCSIS network capacity for the upstream link. Yet, notably, despite the increased DOCSIS network capacity used by a vRAN deployment, the TCO is still the most favorable.
  • We allocated 20% of DOCSIS network upgrade (from low split to mid split) cost to DOCSIS network-based use cases (scenarios 2 and 3). If we take those out (since DOCSIS network upgrades will happen anyway for residential broadband services) the TCO of these indoor use cases get even better compared to the fiber outdoor case (scenario 1).
  • Other key sensitivities include monthly cost/allocated cost of the XHaul, number of small cell sites within a small cell cluster, radio equipment cost, and estimated number/price of threads required for vBBU HW to serve a cluster in the vRAN scenario.

What Do These Results Mean?

SUBSCRIBE TO OUR BLOG

--

--

Get the Medium app

A button that says 'Download on the App Store', and if clicked it will lead you to the iOS App store
A button that says 'Get it on, Google Play', and if clicked it will lead you to the Google Play store
CableLabs

CableLabs

290 Followers

Our mission is to create a powerful innovation engine that develops life altering technologies that move communities and industries toward more connected tomorr